Сборник технических статей

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта
Главная Теория электропривода Усилители в системах электропривода

Усилители в системах электропривода

Печать

До недавнего времени в качестве основного управляющего элемента в системах электропривода использовался магнитный, а несколько ранее – электромашинный усилители. Они обладали недостаточно стабильными нелинейными характеристиками, невысоким коэффициентом усиления, значительной электромагнитной инерцией. Включение такого усилителя на вход системы увеличивало нелинейность результирующей характеристики разомкнутой системы, которая при невысоких коэффициентах усиления заметно проявлялась в статических и динамических характеристиках замкнутой системы. В этих условиях требовался расчет статических характеристик и переходных процессов графоаналитическими методами по точкам с учетом влияния всех нелинейностей.

В связи с развитием микроэлектроники на смену этим усилителям пришел операционный усилитель в виде интегральной схемы, коэффициент усиления которого стабилен и составляет десятки и сотни тысяч, т. е. практически может быть принят бесконечно большим. Включение такого усилителя на вход системы делает изменение коэффициентов усиления и возможную неоднозначность статических характеристик элементов разомкнутой системы (например, проявления насыщения и гистерезиса в магнитной цепи генератора, питающего двигатель) неизмеримо малыми по сравнению с коэффициентом усиления операционного усилителя. Соответственно замена реальных нелинейных характеристик объекта линейными приводит к меньшим погрешностям в расчетах переходных процессов, а в статических характеристиках влияние нелинейностей объекта может быть неразличимым.

Другим примером может служить асинхронный электропривод. При питании от сети скольжение двигателя изменяется в широких пределах и нелинейности системы настолько значительны, что линеаризация их затруднена. Тенденция к расширению области применения частотно-управляемого асинхронного электропривода создает более благоприятные условия для линеаризации его математического описания: область абсолютных скольжений сужается и не выходит за пределы рабочего участка механической характеристики, обеспечивается работа при постоянном потоке и т. п.

Однако возможности линеаризации остаются ограниченными, и при необходимости учета особенностей, вносимых вентильными преобразователями (пульсации напряжений, условия коммутации токов и т. п.), приходится прибегать к использованию ЭВМ.